28 research outputs found

    Adversarial Removal of Demographic Attributes from Text Data

    Full text link
    Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in -- and can be recovered from -- the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to -- and likely condition on -- demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features

    Privacy and Fairness in Recommender Systems via Adversarial Training of User Representations

    Full text link
    Latent factor models for recommender systems represent users and items as low dimensional vectors. Privacy risks of such systems have previously been studied mostly in the context of recovery of personal information in the form of usage records from the training data. However, the user representations themselves may be used together with external data to recover private user information such as gender and age. In this paper we show that user vectors calculated by a common recommender system can be exploited in this way. We propose the privacy-adversarial framework to eliminate such leakage of private information, and study the trade-off between recommender performance and leakage both theoretically and empirically using a benchmark dataset. An advantage of the proposed method is that it also helps guarantee fairness of results, since all implicit knowledge of a set of attributes is scrubbed from the representations used by the model, and thus can't enter into the decision making. We discuss further applications of this method towards the generation of deeper and more insightful recommendations.Comment: International Conference on Pattern Recognition and Method

    The Bias Amplification Paradox in Text-to-Image Generation

    Full text link
    Bias amplification is a phenomenon in which models increase imbalances present in the training data. In this paper, we study bias amplification in the text-to-image domain using Stable Diffusion by comparing gender ratios in training vs. generated images. We find that the model appears to amplify gender-occupation biases found in the training data (LAION). However, we discover that amplification can largely be attributed to discrepancies between training captions and model prompts. For example, an inherent difference is that captions from the training data often contain explicit gender information while the prompts we use do not, which leads to a distribution shift and consequently impacts bias measures. Once we account for various distributional differences between texts used for training and generation, we observe that amplification decreases considerably. Our findings illustrate the challenges of comparing biases in models and the data they are trained on, and highlight confounding factors that contribute to bias amplification

    Unsupervised Distillation of Syntactic Information from Contextualized Word Representations

    Full text link
    Contextualized word representations, such as ELMo and BERT, were shown to perform well on various semantic and syntactic tasks. In this work, we tackle the task of unsupervised disentanglement between semantics and structure in neural language representations: we aim to learn a transformation of the contextualized vectors, that discards the lexical semantics, but keeps the structural information. To this end, we automatically generate groups of sentences which are structurally similar but semantically different, and use metric-learning approach to learn a transformation that emphasizes the structural component that is encoded in the vectors. We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics. Finally, we demonstrate the utility of our distilled representations by showing that they outperform the original contextualized representations in a few-shot parsing setting.Comment: Accepted in BlackboxNLP@EMNLP202

    Do Language Embeddings Capture Scales?

    Full text link
    Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense, and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We show that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance and show that a simple method of canonicalizing numbers can have a significant effect on the results.Comment: Accepted at EMNLP Findings 2020 and EMNLP BlackboxNLP workshop 2020; 8 pages, 2 figures; Minor changes to the acknowledgment sectio

    Few-shot Fine-tuning vs. In-context Learning: A Fair Comparison and Evaluation

    Full text link
    Few-shot fine-tuning and in-context learning are two alternative strategies for task adaptation of pre-trained language models. Recently, in-context learning has gained popularity over fine-tuning due to its simplicity and improved out-of-domain generalization, and because extensive evidence shows that fine-tuned models pick up on spurious correlations. Unfortunately, previous comparisons of the two approaches were done using models of different sizes. This raises the question of whether the observed weaker out-of-domain generalization of fine-tuned models is an inherent property of fine-tuning or a limitation of the experimental setup. In this paper, we compare the generalization of few-shot fine-tuning and in-context learning to challenge datasets, while controlling for the models used, the number of examples, and the number of parameters, ranging from 125M to 30B. Our results show that fine-tuned language models can in fact generalize well out-of-domain. We find that both approaches generalize similarly; they exhibit large variation and depend on properties such as model size and the number of examples, highlighting that robust task adaptation remains a challenge.Comment: Accepted to Findings of ACL 202
    corecore